ag备用网址
产品中心
电能质量 UPS 电涌保护器 马达保护KB 新能源

超宽带EMI滤波器在频率高端的处理方法解析

TIME:2019-03-15   click:

  近十几年来,作为微波实验基础设施的屏蔽室,其应用的频率范围不断扩展,频率高端已由1GHz增加到18GHz,甚至40GHz,预计未来的趋势还会增加到60GHz,甚至100GHz。为保证屏蔽室在整个适▷•●用频段范围的屏蔽效▽•●◆能,即不因电源线或

  文中介绍的超宽带EMI滤波器在频率高端的处理方法是利用电介质或磁介质的电损耗或磁损耗将高频干扰信号转变成热量,从而实现滤波的效果。我们在滤波器中填充的电磁介质对于低频电磁波的吸收作用较弱,不会造成有用信号的大幅度衰减。

  超宽带EMI滤波器在频率低端采用LC反射式滤波原理,在频率高端采用高性能吸波材料的吸收式滤波原理。滤波器设计过程中,先根据需求方提供的通带截止频率、阻带插入损耗和额定电流以及漏电流的规定对滤波器的低频端进行计算机建模,这样就可以得到所需电感电容的数目以及相应的元件值,进而画出相应的电路图。由于EMI滤波器只需满足要求的截止频率和插入损耗,没有特别的频率响应限制,因而低频端建模采用的是电路简单并且元器件较少的切比雪夫滤波响应,可减小滤波器的体积和重量。

  低频端仅能解决100MHz以下的频段,100MHz以上的频段由于电路中导线的分布电感和电感线圈的分布电容等分布参数的影响导致LC滤波电路性能下降甚至完全失效。高频端的处理方法是加工一段空心同轴线,在同轴线的内外导体之间填充磁损耗和电损耗很高的吸波材料,将高频干扰信号在传播路径中衰减掉。同轴▪▲□◁线内外导体之间填充的电介质或磁介质,如铁氧○▲-•■□体、导电碳▼▲黑等多为导体,会导致同轴线内外导体短路,为此需要在内外导体之间增★▽…◇加一层绝缘层。

  低频端的LC滤波电路在100MHz以下的频段具有较好的插入损耗性能,但是由于电路中的电感线圈和电容都是集总参数元件,当工作频率高到100MHz时,电感线圈中的分布电容和电容器中的分布电感会△▪▲□△变成占主导地位的参数,使这类滤波器的插入损耗性能明显恶化。在高频时,填充吸波材料的同轴线却具有良好的插入损耗特性。若要求从低频10kHz到微波波段40GHz都具有良好的EMI抑制性能,则需要将两种滤波器串接使用,这样就形成了频率低◇…=▲端的反射式滤波和频率高端的吸收式滤波的超宽带EMI滤波器的设计思路。

  我们以□◁电源滤波器为例,假设需求方有如下的技术要求:通带截止频率fp=1kHz,阻带起始频率fs=10kHz,通带内衰减小于3dB,阻带内衰减大于100dB,并且阻带要延伸★-●=•▽到40GHz的上限频率。

  先处理低频端部分,采用切比雪夫逼近进行建模。切比雪夫滤波器又称为等波纹滤波器,这种滤波器的衰减在通带内呈现等起伏特性,起伏的大小标志着衰减对理想均匀特性的最大偏离程度;过渡带内的衰减具有比巴特沃斯滤波器更快的增长速率;阻带内的衰减在不考虑分布参数的条件下将呈现出单调增加的趋势。根据以上的技术要求可以确定切比雪夫滤波器的阶数为5,元器件的连接方式分为T型和π型两种。T型电路奇数项元件为电感,偶数项•☆■▲元件为电容,这样所需的电感数目较多,在滤波器的实际制作中影响滤波器体积的主要是电感线圈的大小,采用T型电路很容易造成滤波器体积庞大,不易放置,因此元器件的连接多半采用的是π型电路。π型电路奇数项元件为电容,偶数项元件为电感,其电▪…□▷▷•路图如图1所示。

  图中C1=6.4μF,L2=3.5mH,C3=8.4μF,L4=3.5mH,C5=6.4μF。假设输入端和输出端的负载电阻都为50Ω,对图1的电路进行拉普拉斯变换,可以求出此LC滤波电路在低频端插入损耗的频率响应,其结果如图2所示。通带内插入损耗具有起伏特性,但都不会高于3dB;过渡

  带插入损耗从3dB迅速上升到100dB;阻带内插入损耗呈现单调上升的趋势。

  对高频端的处理,先加工一定长度的同轴线,然后在内外导体之间填充吸波材料,由于吸波材料一般都具有导电性能,因此需要保证内外导体之间的绝缘性能。将低频端的LC滤波△▪▲□△电路和高频端的介质同轴线串接,用金属壳体屏蔽封装,便得到超宽带EMI滤波器。表1给出了此滤波器插入损耗的检测数据,阻带内的插入损耗都大于100dB,满足预先的•●要求。

  本文所介绍的超宽带EMI滤波器在大于10GHz的频段仍然具有100dB以上的插入损耗,克服了传统LC滤波器在频率高端由于电路分布参数影响导致滤波性能下降的弊端。这种超宽带EMI滤波器非常适合40GHz甚至更高工作频率的屏蔽室使用,可以防止干扰信号通过电源线或信号线进出屏蔽室。

  在标准电磁兼容性测试实验室可得到设备的总干扰情况,但无法了解设备◆■的共模干扰和差模干扰特性。为了在测量...

  在标准电磁兼容性测试实验室可得到设备的总干扰情况,但无法了解设备的共模干扰和差模干扰特性。为了在测量...

  电磁干扰◇•■★▼传输有两种方式:一种是传导传输方式,另一种则是辐射传输方式。传导传输是在干扰源和敏感设备之间...

  在电子设备中接地是抑制电磁噪声和防止电磁干扰以及保护人员和设备安全的重要方法之一。要求电子设备时机座...

  外部电源是用来驱动PLC输出设备(负载)和提供输入信号的,又称用户电源,同一台PLC的外部电源可能有...

  在开关电源中,EMI滤波器对共模和差模传导噪声的抑制●起着显著的作用。高频开关电源由☆△◆▲■于其在体积、重量、...

  由于开关电源的开关特性,容易使得开关电源产生极大的电磁兼容方面的干扰,作为一个电源工程师、电磁兼容工...

  通常,不管电路板多么▲=○▼的小,电源只可占用剩余的空间。采用凌力尔特最新的四通道降压型稳压器 LT8602...

  在开关电源中,EMI滤波器对共模和差模传导噪声的抑制起着显著的作用。在研究滤波器原理的基础上,探讨了...

  标准的EMI滤波器通常由串联电抗器和并联电容器组成的低通滤波电路,其作用是允许设备正常工作时的频率信...

  开关电源是一种应用功率半导体器件并综合电力变换技术、电子电磁技术、自动控制技术等的电力电子产品

  该方案以延长电路使用寿命为主题,以开关电源与线性电源相互结合为基础,扬长避短充分利用各自的优势,因为...

  350W LED照明电源的PFC升压变换器与辅助电源电路如图2(a)所示。 (1)输入级电路 输入级...

  随着电子技术的发展,电磁兼容性问题成为电路设计工程师极为关注和棘手的问题。 根据多年的工程经验,大家...

  此专栏将为大家介绍有关静噪对◇=△▲策的基础知识,从“什幺是EMI?”开始,解说各种静噪元件的工作、使用...

  开关电源具有体积小、重量轻、效率高等优点,广泛应用于各个▲●…△领域。由于开关电源固有的特点,自身产生的各种...

  电磁干扰滤波器(EMI filter)客观存在能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的...

  直流电源EMI滤波器的设计原则及网络结构和参数选择 1 设计原则-满足最大阻抗失配 &...

  为便携应用选择适合的集成EMI滤波及ESD保护方案 如今的手机等便携设备的尺寸日趋小巧纤薄,同时又...

ag备用网址

上一篇:没有了 下一篇:怎么设计合格的lc滤波器与理解其q值